Regulation (EU) No 1305/2013 of the European Parliament and of the Council of 17 December 2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No 1698/200
Article 3. Mission
The EAFRD shall contribute to the Europe 2020 Strategy by promoting sustainable rural development throughout the Union in a manner that complements the other instruments of the CAP, the cohesion policy and the common fisheries policy. It shall contribute to the development of a Union agricultural sector that is more territorially and environmentally balanced, climate-friendly and resilient and competitive and innovative. It shall also contribute to the development of rural territories.
Article 4. Objectives
Within the overall framework of the CAP, support for rural development, including for activities in the food and non-food sector and in forestry, shall contribute to achieving the following objectives:
Galluzzo, N. (2016). Analysis of Financial Subsidies Allocated By the Common Economic-Territorial Inequalities By Indexes of Concentration. Studia Ubb Geographia, 2016(1), 27–38.
Esposti, R. (2007). Regional growth and policies in the european union: Does the common agricultural policy have a counter-treatment effect? American Journal of Agricultural Economics, 89(1), 116–134.
Dax, T., & and Gerhard Hovorka. (2007). The territorial dimension of the Common Agricultural and Rural Development policy (CAP) and its relation to cohesion objectives.
How evenly distributed are the payments?
Are there diferences between north-south or west-east?
Is there substantial clustering in the spatial distribution?
What explains the location of payments?
Is there an interaction between the size of payments and effects of predictors?
Spatial dependency is ignored.
Spatial dependency is partly controlled for.
Spatial dependency is (largely) controlled for.
Payments are likely to be related to points where offices are located rather than where actually used.
Measures related to the payments may be a significant predictor but are currently no considered.
Data may not available for the entire EU.
Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 December 2013 on the financing, management and monitoring of the common agricultural policySearch for available translations of the preceding (Article 111, point 1)
Member States shall ensure annual ex-post publication of the beneficiaries of the Funds. The publication shall contain:
The information referred to in the first subparagraph shall be made available on a single website per Member State. It shall remain available for two years from the date of the initial publication.
Geocoding using OpenCage API. A total of 10755 addresses are currently geocoded.
Is it possible to download all data at a time?
Is it possible to query all data at a time?
Kernel density estimates (KDE) of payments
KDE of payments and population
Summary statistics of k nearest neighbours
## dist.1 dist.2 dist.3 dist.4
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.763
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 336.591
## Median : 0.00 Median : 0.0 Median : 0.0 Median : 651.961
## Mean : 30.25 Mean : 351.7 Mean : 506.5 Mean : 1263.236
## 3rd Qu.: 0.00 3rd Qu.: 278.8 3rd Qu.: 509.3 3rd Qu.: 1517.612
## Max. :6695.67 Max. :8590.7 Max. :8590.7 Max. :12226.355
Number of payments in a 1x2 and 2x1 matrix quadrats
Number of payments in a 12x10 matrix quadrats.
quadrat.test(quadratcount(payPp, nx = 1, ny = 2), method = 'Chisq')
##
## Chi-squared test of CSR using quadrat counts
## Pearson X2 statistic
##
## data:
## X2 = 31.324, df = 1, p-value = 4.367e-08
## alternative hypothesis: two.sided
##
## Quadrats: 2 tiles (irregular windows)
quadrat.test(quadratcount(payPp, nx = 2, ny = 1), method = 'Chisq')
##
## Chi-squared test of CSR using quadrat counts
## Pearson X2 statistic
##
## data:
## X2 = 131.69, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
##
## Quadrats: 2 tiles (irregular windows)
quadrat.test(quadratcount(payPp, nx = 12, ny = 10), method = 'Chisq')
##
## Chi-squared test of CSR using quadrat counts
## Pearson X2 statistic
##
## data:
## X2 = 2104.6, df = 87, p-value < 2.2e-16
## alternative hypothesis: two.sided
##
## Quadrats: 88 tiles (irregular windows)
Warton, D. I., & Shepherd, L. C. (2010). Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Annals of Applied Statistics, 4(3), 1383–1402. https://doi.org/10.1214/10-AOAS331
Warton, D. I., & Shepherd, L. C. (2010). Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Annals of Applied Statistics, 4(3), 1383–1402. https://doi.org/10.1214/10-AOAS331
Lowest payment sum quartile points as response
## Nonstationary Poisson process
##
## Log intensity: ~popIm + trendIm + elevIm + arableIm + permIm + artifIm
##
## Fitted trend coefficients:
## (Intercept) popIm trendIm elevIm arableIm
## -1.700276e+01 1.160985e-06 3.094088e-02 -1.190042e-04 -1.170079e-03
## permIm artifIm
## 1.377757e-01 2.880757e-02
##
## Estimate S.E. CI95.lo CI95.hi Ztest
## (Intercept) -1.700276e+01 7.960209e-02 -1.715877e+01 -1.684674e+01 ***
## popIm 1.160985e-06 5.218456e-07 1.381859e-07 2.183783e-06 *
## trendIm 3.094088e-02 2.702542e-03 2.564400e-02 3.623777e-02 ***
## elevIm -1.190042e-04 1.276838e-05 -1.440298e-04 -9.397865e-05 ***
## arableIm -1.170079e-03 3.338015e-03 -7.712468e-03 5.372311e-03
## permIm 1.377757e-01 1.431370e-02 1.097214e-01 1.658301e-01 ***
## artifIm 2.880757e-02 1.527812e-02 -1.136993e-03 5.875214e-02
## Zval
## (Intercept) -213.5968610
## popIm 2.2247662
## trendIm 11.4488066
## elevIm -9.3202313
## arableIm -0.3505313
## permIm 9.6254456
## artifIm 1.8855443
Highest payment sum quartile points as response
## Nonstationary Poisson process
##
## Log intensity: ~popIm + trendIm + elevIm + arableIm + permIm + artifIm
##
## Fitted trend coefficients:
## (Intercept) popIm trendIm elevIm arableIm
## -1.689416e+01 3.210001e-06 2.032742e-02 -1.490937e-04 1.721156e-03
## permIm artifIm
## 1.547328e-01 4.487833e-02
##
## Estimate S.E. CI95.lo CI95.hi Ztest
## (Intercept) -1.689416e+01 8.017086e-02 -1.705129e+01 -1.673703e+01 ***
## popIm 3.210001e-06 4.116555e-07 2.403171e-06 4.016831e-06 ***
## trendIm 2.032742e-02 2.762954e-03 1.491213e-02 2.574271e-02 ***
## elevIm -1.490937e-04 1.328558e-05 -1.751329e-04 -1.230544e-04 ***
## arableIm 1.721156e-03 3.346037e-03 -4.836956e-03 8.279268e-03
## permIm 1.547328e-01 1.423651e-02 1.268298e-01 1.826358e-01 ***
## artifIm 4.487833e-02 1.466509e-02 1.613528e-02 7.362137e-02 **
## Zval
## (Intercept) -210.7269515
## popIm 7.7977855
## trendIm 7.3571325
## elevIm -11.2222235
## arableIm 0.5143865
## permIm 10.8687344
## artifIm 3.0602154
(model <- ppm(unmark(payPp) ~ popIm + trendIm + artifIm))
## Nonstationary Poisson process
##
## Log intensity: ~popIm + trendIm + artifIm
##
## Fitted trend coefficients:
## (Intercept) popIm trendIm artifIm
## -1.593681e+01 1.443257e-06 2.496813e-02 5.607233e-02
##
## Estimate S.E. CI95.lo CI95.hi Ztest
## (Intercept) -1.593681e+01 1.502866e-02 -1.596627e+01 -1.590735e+01 ***
## popIm 1.443257e-06 2.180324e-07 1.015922e-06 1.870593e-06 ***
## trendIm 2.496813e-02 1.307040e-03 2.240638e-02 2.752988e-02 ***
## artifIm 5.607233e-02 7.208373e-03 4.194417e-02 7.020048e-02 ***
## Zval
## (Intercept) -1060.427700
## popIm 6.619461
## trendIm 19.102807
## artifIm 7.778777
Conditional intensity of payments as predicted by model with population variables as predictors.
(model <- ppm(unmark(payPp) ~ elevIm + arableIm + permIm))
## Nonstationary Poisson process
##
## Log intensity: ~elevIm + arableIm + permIm
##
## Fitted trend coefficients:
## (Intercept) elevIm arableIm permIm
## -1.511703e+01 -1.181799e-04 -1.205093e-02 1.291018e-01
##
## Estimate S.E. CI95.lo CI95.hi Ztest
## (Intercept) -1.511703e+01 3.535214e-02 -1.518632e+01 -1.504775e+01 ***
## elevIm -1.181799e-04 6.028310e-06 -1.299952e-04 -1.063646e-04 ***
## arableIm -1.205093e-02 1.598117e-03 -1.518319e-02 -8.918682e-03 ***
## permIm 1.291018e-01 7.129248e-03 1.151287e-01 1.430748e-01 ***
## Zval
## (Intercept) -427.612993
## elevIm -19.604152
## arableIm -7.540708
## permIm 18.108749
Conditional intensity of payments as predicted by model with landscape variables as predictors.
## Nonstationary Poisson process
##
## Log intensity: ~popIm + trendIm + elevIm + arableIm + permIm + artifIm
##
## Fitted trend coefficients:
## (Intercept) popIm trendIm elevIm arableIm
## -1.571839e+01 2.199394e-06 2.876969e-02 -1.228734e-04 6.102392e-03
## permIm artifIm
## 1.493935e-01 4.217905e-02
##
## Estimate S.E. CI95.lo CI95.hi Ztest
## (Intercept) -1.571839e+01 4.039433e-02 -1.579756e+01 -1.563921e+01 ***
## popIm 2.199394e-06 2.241841e-07 1.760001e-06 2.638787e-06 ***
## trendIm 2.876969e-02 1.333400e-03 2.615628e-02 3.138311e-02 ***
## elevIm -1.228734e-04 6.527688e-06 -1.356675e-04 -1.100794e-04 ***
## arableIm 6.102392e-03 1.688916e-03 2.792177e-03 9.412607e-03 ***
## permIm 1.493935e-01 7.195411e-03 1.352908e-01 1.634963e-01 ***
## artifIm 4.217905e-02 7.389274e-03 2.769634e-02 5.666177e-02 ***
## Zval
## (Intercept) -389.123592
## popIm 9.810661
## trendIm 21.576191
## elevIm -18.823425
## arableIm 3.613200
## permIm 20.762330
## artifIm 5.708146
Intensity of payments as predicted by model by full model and actual KDE of payments.
Distribution is not spatially symmetrical.
Divides between different parts of the country are apparent.
Payments cluster in settlements.
There is positive effect of population, its trend and agricultural land use. Elevation has a negative effect.
The location of payments with lower value is not as significantly explained by population and artificial landscape when compared to highest valued payments.